

❖ 2016 KCS Inorganic Chemistry Division  
Summer Symposium

## Crystal Growth, Structure, and Characterization of an Organic-Inorganic Hybrid 1D-Chain Compound: $(i\text{-Pr})_2\text{NH}_2\text{PbBr}_3$

Seung-Jin Oh, Ho Yong Jung, Jung Joo Kim, Jong Ho So, Eun Jung Cho, Kang Min Ok\*

Department of Chemistry, Chung-Ang University, Seoul, 156-756, Republic of Korea.

Introduction Experiments Results & Discussion Conclusion

❖ Structure-Property Relationships

Synthesis  
Design  
Properties  
Structure

Introduction Experiments Results & Discussion Conclusion

❖ Structure-Property Relationships

Metal  
Metal Oxide  
Organic Linker  
Metal Halide  
Metal Sulfide

Synthesis  
Hydrothermal Reaction  
Solid-state Reaction

2

Introduction Experiments Results & Discussion Conclusion

❖ What is second harmonic generation (SHG)?

✓ Non linear properties  
NCS = Non-centrosymmetric

$\vec{p} = \epsilon_0 \chi^{(1)} \vec{E}$   
 $= \epsilon_0 [\chi^{(1)} \vec{E}(t) + \chi^{(2)} \vec{E}^2(t) + \dots]$   
 $\vec{E} = E e^{-i\omega t} + c$   
 $= \vec{P}^{(1)}(t) + \vec{P}^{(2)}(t) + \dots$   
 $\vec{P}^{(2)}(t) = 2 \epsilon_0 \chi^{(2)} E E^* + \epsilon_0 \chi^{(2)} E^2 e^{-i2\omega t} + c$

2ω frequency

5

Introduction Experiments Results & Discussion Conclusion

❖ Structure-Property Relationships

Second Harmonic Generation  
Ferroelectricity

Properties  
Structure

Ropp, V. et al. *Optics Express* 2010, 18, 4012.  
Ok, K. M.; Chi, E. O.; Halasyamani, P. S. *Chemical Society Reviews* 2006, 35, 710.

3

Introduction Experiments Results & Discussion Conclusion

❖ What is Non-centrosymmetric (NCS) materials?

Centrosymmetric  
Non-centrosymmetric

No SHG produced  
SHG produced

6

**Introduction** **Experiments** **Results & Discussion** **Conclusion**

❖ How to make NCS?

➤ Asymmetric building unit

- Second-order Jahn-Teller distortion

(1) Octahedrally Coordinated d<sup>0</sup> Transition Metals:  $\text{MO}_6$

$\text{Ti}^{4+}$ ,  $\text{Nb}^{5+}$ ,  $\text{Ta}^{5+}$ ,  $\text{V}^{5+}$ ,  $\text{Mo}^{6+}$ ,  $\text{W}^{6+}$ , etc.

**Out-of-Center Intra-Octahedral Distortion**

(2) Lone Pair Cations

$\text{Ti}^{4+}$ ,  $\text{Pb}^{2+}$ ,  $\text{Sr}^{2+}$ ,  $\text{Sb}^{3+}$ ,  $\text{Bi}^{3+}$ ,  $\text{Se}^{4+}$ ,  $\text{Te}^{4+}$ , etc.

**Stereochemically Active**

P. S. Halasyamani, K. R. Poepelmeier, *Chem. Mater.*, (1998) **10**, 2753.

7

**Introduction** **Experiments** **Results & Discussion** **Conclusion**

**Inorganic Frameworks** **Hybrid-Halometallates** **Organic Asymmetric units**

▪  $\text{PbX}_2$  (X = F, Cl, Br, and I).  
▪ Anionic frameworks composed of  $\text{PbX}_6$  octahedra.  
▪ Zero to three dimensional structure.

▪ Induced arrangement of Ammonium cations  
→ Aligned asymmetric unit  
→ NCS structure & High performance

▪ Organic cations: Ammonium.  
▪ Asymmetric cations  
▪ Hydrogen bonding

10

**Introduction** **Experiments** **Results & Discussion** **Conclusion**

➤ Structure–Property Relationships in Solid Solutions of Noncentrosymmetric Aurivillius Phases,  $\text{Bi}_{4-x}\text{La}_x\text{Ti}_3\text{O}_{12}$  ( $x = 0$ –0.75)

(a)  $\text{Bi}_3\text{O}_6$  Unit  
Net Polarization  $\rightarrow$   $a$ -axis  
+  
Net Polarization  $\rightarrow$   $a$ -axis

(b)  $\text{Bi}(1)$   $\text{Bi}(2)$

180  
120  
60  
0  
x in  $\text{Bi}_{4-x}\text{La}_x\text{Ti}_3\text{O}_{12}$

8

**Introduction** **Experiments** **Results & Discussion** **Conclusion**

(S- $\beta$ -phenethylammonium)  $\text{Pb Cl}_3$   $\rightarrow$  (benzylammonium)<sub>2</sub>  $\text{Pb Cl}_3$

$P2_12_12_1$  **Dimension**  $Cmc2_1$   
1D Structure 2D Structure

D. G. Billing and A. Lemmerer, *CrystEngComm* **2006**, *8*, 686–695.

W. Q. Liao et al., *Nat Commun* **2015**, *6*, 7338.

11

**Introduction** **Experiments** **Results & Discussion** **Conclusion**

➤ Influence of the Cation Size on the Centricities in  $\text{AMo}_2\text{O}_5(\text{SeO}_3)_2$  (A = Sr, Pb, and Ba)

$\text{SrMo}_2\text{O}_5(\text{SeO}_3)_2$  (CS)  $\text{BaMo}_2\text{O}_5(\text{SeO}_3)_2$  (NCS)

SHG (A.U.)

55  
45  
35  
25  
15  
0  
0 20 40 60 80 100  
Particle Size ( $\mu\text{m}$ )

S.-J. Oh, D. W. Lee and K. M. Ok, *Inorganic Chemistry* **2012**, *51*, 5393–5399.

9

**Introduction** **Experiments** **Results & Discussion** **Conclusion**

(benzylammonium)<sub>2</sub>  $\text{Pb Cl}_4$   $\rightarrow$  (2-naphthymethylammonium)<sub>2</sub>  $\text{Pb Cl}_3$

$Cmc2_1$  **NCS structure**  $Pbma$  **2D Structure**

W. Q. Liao et al., *Nat Commun* **2015**, *6*, 7338.

M. Braun, W. Frey, Z. Kristallogr. NCS **1999**, *214*, 333.

12

**Introduction** **Experiments** **Results & Discussion** **Conclusion**

➤ **Ammonium cations**

- Secondary ammonium cations



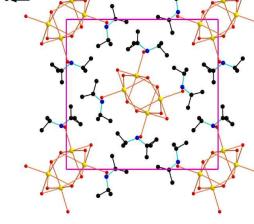
Diisopropylammonium (DIPA)

➤ **Frameworks**

- Lead Bromide



PbBr<sub>6</sub> octahedra  
Anionic frameworks


a. Large cone-angle: restrict the H-bonds.  
b. Few study about secondary ammonium.  
c. Few study for aliphatic functional group R

13

**Introduction** **Experiments** **Results & Discussion** **Conclusion**

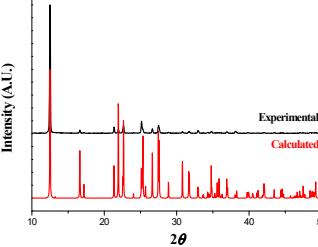
❖ **Single-Crystal X-ray Diffraction**

- Synchrotron light source: 2D-SMC at Pohang Accelerator Laboratory (PAL), Korea.
- Temperature: 100K
- Wavelength: 0.63000 Å



Formula sum C<sub>12</sub>H<sub>32</sub>N<sub>2</sub>Br<sub>6</sub>Pb<sub>2</sub>  
Formula weight 1098.22  
Crystal system monoclinic  
Space group P2<sub>1</sub>/c (no. 14)  
Unit cell dimensions a = 8.2950(17) Å  
b = 16.9110(3) Å  
c = 18.3850(3) Å  
β = 91.90(3)°  
Z 4  
Cell volume 2577.6(9) Å<sup>3</sup>  
Density, calculated 2.819 g/cm<sup>3</sup>  
R/F<sup>a</sup> 0.043  
R<sub>wp</sub>(F<sub>c</sub><sup>2</sup>)<sup>b</sup> 0.073

<sup>a</sup> $R(F) = \sum |F_{\text{obs}} - |F_{\text{cal}}| / \sum |F_{\text{obs}}|$ , <sup>b</sup> $R_{\text{wp}}(F_c^2) = \left[ \sum w(F_c^2 - F_{\text{cal}}^2)^2 / \sum w(F_c^2) \right]^{1/2}$


16

**Introduction** **Experiments** **Results & Discussion** **Conclusion**

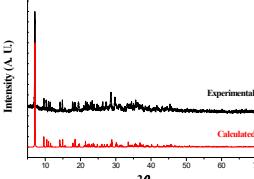
❖ **Synthesis**

Preparations of reagents: DIPAB

- DIPA + conc. HBr solution + Acetone in ice-bath.



Intensity (A.U.)

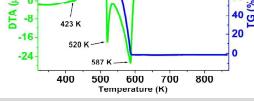

Experimental  
Calculated

Powder X-ray diffraction pattern of synthesized DIPAB and compared data with simultaneously calculated pattern.

14

**Introduction** **Experiments** **Results & Discussion** **Conclusion**

❖ **Powder X-ray Diffraction**




Intensity (A.U.)

Experimental  
Calculated

2θ

❖ **Temperature Gravimetric Analysis**



Weight (%)

33%  
PbBr<sub>2</sub>

Temperature (°C)

DTA (mV)

TC (K)

100  
80  
60  
40  
20  
0

16  
8  
0  
-8  
-16  
-24

400 500 600 700 800

423 K  
520 K  
587 K

The organic compound, DIPAB, undergo 100% weight loss in a single step at 247 °C.  
Da-wei Fu et al., SCIENCE, 2013, 339, 425

DIPAB are to be stabilized in the hybrid inorganic organic compounds

17

**Introduction** **Experiments** **Results & Discussion** **Conclusion**

❖ **Synthesis**

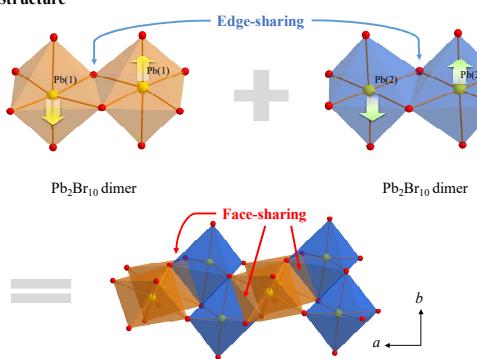
Synthesize the halometallates: (DIPA)PbBr<sub>3</sub>



- **Solution methods**

- I. DIPAB + PbBr<sub>2</sub> + Solvent with stir at 50°C for 1day.
  - solvent: DMF, DMSO, or conc. HBr
- II. Slow evaporation until crystallized.





2 mm

Transparent crystal obtained

15

**Introduction** **Experiments** **Results & Discussion** **Conclusion**

❖ **Structure**



Edge-sharing  
Pb<sub>2</sub>Br<sub>10</sub> dimer  
Face-sharing  
Pb<sub>2</sub>Br<sub>10</sub> dimer

b  
a

18

Introduction Experiments **Results & Discussion** Conclusion

❖ Structure

■ Vacancies between staggered chain

■ Each chain units surrounded by the four DIPA cations

19

Introduction Experiments **Results & Discussion** Conclusion

**Plan**

1 Change Br to F, Cl, and I  
■ Control the distance of H-bonds.

2 Change ammonium  
■ Asymmetric secondary or tertiary ammonium.

3 Conductivity  
■ Along the  $a$ -axis.

22

Introduction Experiments **Results & Discussion** Conclusion

❖ Structure

Hydrogen-bonding geometry (Å, °).

| N-H···Br     | N-H      | H···Br   | N···Br   | N-H···Br  |
|--------------|----------|----------|----------|-----------|
| N1-H1A···Br6 | 0.970(4) | 2.457(5) | 3.401(1) | 164.29(2) |
| N1-H1B···Br4 | 0.970(1) | 2.606(3) | 3.547(4) | 163.51(1) |
| N2-H2A···Br7 | 0.970(3) | 2.446(3) | 3.390(1) | 164.14(2) |
| N2-H2B···Br3 | 0.970(1) | 2.525(2) | 3.491(1) | 173.47(2) |

**Strong H-bonds can be found between H-Br.**

20

Introduction Experiments **Results & Discussion** Conclusion

Crystal Growth

Hydrogen bonding

1D structure

Structure -Property relation

(i-Pr)2NH2PbBr3

23

Introduction Experiments **Results & Discussion** Conclusion

❖ Structure

C-C bonds N-C bonds  $\theta_1$   $\theta_2$   $\theta_3$

| DIPAB       | 1.496(2), 1.524(1)<br>1.515(1), 1.513(5) | 1.509(1)<br>1.497(4) | 119.13(3) | 112.13(2)<br>112.33(3) |
|-------------|------------------------------------------|----------------------|-----------|------------------------|
| DIPA-Pb-Br3 | 1.520(2), 1.523(4)<br>1.510(2), 1.527(1) | 1.512(2)<br>1.517(4) | 117.50(4) | 110.73(5)<br>113.10(5) |

Obstruct the composition of 2D-layer

1D-chain structure

21

Acknowledgements

지도 교수: 옥강민  
Research Pf.  
Post doc.  
Graduate Student  
Min Feng Lu  
Guohong Zou  
황자환, 조종일  
김형구, 송승윤  
김봉수, 정호용

❖ 중견 연구자 지원사업 (핵심 연구)  
NRF 한국연구재단

❖ 비중심 대처 소재 은행  
Korea National Research Resource Bank  
비중심 대처 소재 은행  
National Research Resource Bank

4